

    
      
          
            
  
Easy MCP2221

Easy MCP2221 is a Python module to interface with Microchip MCP2221 and MCP2221A.

Connected to the USB port, this 14 pin chip part can provide a normal computer with the capabilities of a basic microcontroller.

MCP2221’s peripherals:


	4 GPIO


	3 channel ADC


	DAC


	I2C


	UART


	Clock Output


	USB Wake-up via Interrupt Detection.




So you can practice the basics of digital electronics, microcontrollers, and robotics using nothing more than a regular computer, a breadboard, a few parts, and Python.

Disclaimer: Some examples in this documentation show bare connections from your USB port to a breadboard. Most USB port controllers are protected against short-circuit between power and/or data lines, but some are not. I am not responsible for any damage you may cause to your computer. To be safe, always use an isolated powered USB hub for experimentation.







            

          

      

      

    

  

    
      
          
            
  
Install

EasyMCP2221 should work in Windows and Linux. Install it using pip.

Pip command for Linux:

pip install EasyMCP2221





Pip command for Windows:

py -m pip install EasyMCP2221





EasyMCP2221 depends on hidapi, which in fact needs some backend depending on OS. Sometimes this is troublesome.

If you get an error like this:

ImportError: Unable to load any of the following libraries:libhidapi-hidraw.so libhidapi-hidraw.so.0 libhidapi-libusb.so libhidapi-libusb.so.0 libhidapi-iohidmanager.so libhidapi-iohidmanager.so.0 libhidapi.dylib hidapi.dll libhidapi-0.dll





Try to install the following packages using pip:


	libusb


	libusb1




If that doesn’t work, try manually installing libhidapi from https://github.com/libusb/hidapi/releases.




            

          

      

      

    

  

    
      
          
            
  
Examples

First import EasyMCP2221 and create a new Device.

If you can, that’s great news! If you don’t, check if OS is able to “see” the device or not.

# Just check if the MCP2221 is there.
import EasyMCP2221

try:
    mcp = EasyMCP2221.Device()

except RuntimeError:
    print("MCP2221 is not there... :(")
    exit()

print("MCP2221 is there!")
print(mcp)





The output should be like this:

MCP2221 is there!
{
        "Chip settings": {
                "Power management options": "enabled",
                "USB PID": "0x00DD",
                "USB VID": "0x04D8",
                "USB requested number of mA": 100
        },
        "Factory Serial": "01234567",
        "GP settings": {},
        "USB Manufacturer": "Microchip Technology Inc.",
        "USB Product": "MCP2221 USB-I2C/UART Combo",
        "USB Serial": "0000000000"
}






Basic GPIO


Basic digital output

Configure pin function using set_pin_function(), then use GPIO_write() to change its output.

# Simple example to show how to initialize class,
# set pin function and change value.
import EasyMCP2221

# Connect to device
mcp = EasyMCP2221.Device()

# Reclaim GP0 for General Purpose Input Output, as an Output.
# Default output is logical level 0.
mcp.set_pin_function(gp0 = "GPIO_OUT")

# Change it to logical 1
mcp.GPIO_write(gp0 = True)








Digital output: LED blinking

Same as before, but use GPIO_write() in a loop to change its output periodically.

# How to blink a LED connected to GP0
import sys
sys.path.append('../')

import EasyMCP2221
from time import sleep

# Connect to device
mcp = EasyMCP2221.Device()

# Reclaim GP0 for General Purpose Input Output, as an Output.
# Default output is logical level 0.
mcp.set_pin_function(gp0 = "GPIO_OUT")

while True:
    mcp.GPIO_write(gp0 = True)
    sleep(0.5)
    mcp.GPIO_write(gp0 = False)
    sleep(0.5)








Digital input: Mirror state

We introduce GPIO_read() this time.

In order to illustrate how to read from GPIO digital input, let’s setup GP2 and GP3 to mimic the state of GP0 and GP1.

# GPIO output and input.
# GP0 is an output, but GP3 will be an input.
# The state of GP3 will mirror GP0.
import sys
sys.path.append('../')

import EasyMCP2221
from time import sleep

# Connect to device
mcp = EasyMCP2221.Device()

# GP0 and GP1 are inputs, GP2 and GP3 are outputs.
mcp.set_pin_function(
    gp0 = "GPIO_OUT",
    gp3 = "GPIO_IN")

while True:
    inputs = mcp.GPIO_read()
    mcp.GPIO_write(
        gp0 = inputs[3])









Analog signals


ADC basics

In this example, we setup GP1, GP2 and GP3 as analog inputs using set_pin_function(). Configure ADC reference with ADC_config() and lastly, read ADC values using ADC_read().

It works better if you take off the LED and connect three potentiometers to the inputs.

Remember to always put a 330 ohm resistor right in series with any GP pin. That way, if you by mistake configured it as an output, the short circuit current won’t exceed the 20mA.

# ADC input
# MCP2221 have one 10bit ADC with three channels connected to GP1, GP2 and GP3.
# The ADC is always running.
import EasyMCP2221
from time import sleep

# Connect to device
mcp = EasyMCP2221.Device()

# Use GP1, GP2 and GP3 as analog input.
mcp.set_pin_function(gp1 = "ADC", gp2 = "ADC", gp3 = "ADC")

# Configure ADC reference
# Accepted values for ref are 'OFF', '1.024V', '2.048V', '4.096V' and 'VDD'.
mcp.ADC_config(ref="VDD")

# Read ADC values
# (adc values are always available regardless of pin function, even if output)
while True:
    values = mcp.ADC_read()

    print("ADC0: %4.1f%%    ADC1: %4.1f%%    ADC2: %4.1f%%" %
        (
        values[0] / 1024 * 100,
        values[1] / 1024 * 100,
        values[2] / 1024 * 100,
        ))

    sleep(0.1)





This is the console output when you move a variable resistor in GP3.

ADC0:  0.3%    ADC1:  0.2%    ADC2:  0.0%
ADC0:  0.3%    ADC1:  0.1%    ADC2:  0.0%
ADC0:  0.3%    ADC1:  0.2%    ADC2:  9.9%
ADC0:  0.2%    ADC1:  0.1%    ADC2: 21.7%
ADC0:  0.3%    ADC1:  0.3%    ADC2: 31.7%
ADC0:  0.2%    ADC1:  0.0%    ADC2: 38.2%
ADC0:  0.4%    ADC1:  0.3%    ADC2: 45.5%
ADC0:  0.2%    ADC1:  0.0%    ADC2: 52.3%
ADC0:  0.3%    ADC1:  0.3%    ADC2: 56.2%
ADC0:  0.1%    ADC1:  0.0%    ADC2: 58.8%
ADC0:  0.4%    ADC1:  0.2%    ADC2: 61.6%
ADC0:  0.1%    ADC1:  0.0%    ADC2: 64.6%
ADC0:  0.3%    ADC1:  0.2%    ADC2: 67.1%
ADC0:  0.2%    ADC1:  0.2%    ADC2: 70.4%
ADC0:  0.3%    ADC1:  0.1%    ADC2: 74.5%
ADC0:  0.2%    ADC1:  0.1%    ADC2: 79.2%
ADC0:  0.2%    ADC1:  0.1%    ADC2: 80.6%







Mixed signal: level meter

We will use the analog level in GP3 to set the state or three leds connected to GP0, GP1 and GP2.

# This could be a voltage level meter.
# GP0 and GP1 and GP2 are digital outputs.
# GP2 is analog input.
# Connect:
#   A red    LED between GP0 and positive (with a resistor).
#   A yellow LED between GP1 and positive (with a resistor).
#   A green  LED between GP2 and positive (with a resistor).
#   A potentiometer to GP3, between positive and ground.
# If potentiometer is below 25%, red led will blink.
# Between 25% and 50%, only red will light still.
# Between 50% and 75%, red and yellow light.
# Above 75%, all three leds light.
#
# Tip: you could connect a LDR instead of a potentiometer to
# make a light level indicator.
#

import sys
sys.path.append('../')

import EasyMCP2221
from time import sleep

# Connect to device
mcp = EasyMCP2221.Device()

# GP0 and GP1 are inputs, GP2 and GP3 are outputs.
mcp.set_pin_function(
    gp0 = "GPIO_OUT",
    gp1 = "GPIO_OUT",
    gp2 = "GPIO_OUT",
    gp3 = "ADC")

mcp.ADC_config(ref="VDD")

while True:
    pot = mcp.ADC_read()[2]   # ADC channel 2 is GP3
    pot_pct = pot / 1024 * 100

    if pot_pct < 25:
        red_led_status = mcp.GPIO_read()[0]
        mcp.GPIO_write(
            gp0 = not red_led_status,
            gp1 = False,
            gp2 = False)

        sleep(0.1)

    elif 25 < pot_pct < 50:
        mcp.GPIO_write(
            gp0 = True,
            gp1 = False,
            gp2 = False)

    elif 50 < pot_pct < 75:
        mcp.GPIO_write(
            gp0 = True,
            gp1 = True,
            gp2 = False)

    elif pot_pct > 75:
        mcp.GPIO_write(
            gp0 = True,
            gp1 = True,
            gp2 = True)








DAC: LED fading

We use DAC_config() and DAC_write() to make a LED (connected to GP3 or GP2) to fade-in and fade-out.

# DAC output
# MCP2221 have only 1 DAC, connected to GP2 and/or GP3.
import EasyMCP2221
from time import sleep

# Connect to device
mcp = EasyMCP2221.Device()

# Use GP2 and GP3 as DAC output.
mcp.set_pin_function(gp2 = "DAC", gp3 = "DAC")

# Configure DAC reference (max. output)
# Accepted values for ref are 'OFF', '1.024V', '2.048V', '4.096V' and 'VDD'.
mcp.DAC_config(ref="VDD")

while True:
    for v in range(0,32):
        mcp.DAC_write(v)
        sleep(0.01)

    for v in range(31,0,-1):
        mcp.DAC_write(v)
        sleep(0.01)









I2C bus


I2C bus scan

We will use I2C_read() to send a read command to any possible I2C address in the bus. The moment we get an acknowledge, we know there is some slave connected.

To make this example work, you need to get an EEPROM (e.g. 24LC128) and connect it properly to the SCA and SCL lines, as well as power supply.

# Very simple I2C scan
import EasyMCP2221

# Connect to MCP2221
mcp = EasyMCP2221.Device()

# Optionally configure GP3 to show I2C bus activity.
mcp.set_pin_function(gp3 = "LED_I2C")

print("Searching...")

for addr in range(0, 0x80):
    try:
        mcp.I2C_read(addr)
        print("I2C slave found at address 0x%02X" % (addr))

    except RuntimeError:
        pass






This is my output:

$ python I2C_scan.py
Searching...
I2C slave found at address 0x50







Write to an EEPROM

In this example, we will use I2C_write() to write some string in the first memory position of an EEPROM.

# Simple EEPROM storage.
import EasyMCP2221

# Connect to MCP2221
mcp = EasyMCP2221.Device()

# Configure GP3 to show I2C bus activity.
mcp.set_pin_function(gp3 = "LED_I2C")

MEM_ADDR = 0x50
MEM_POS  = 0

# Take a phrase
phrase = input("Tell me a phrase: ")
# Encode into bytes using preferred encoding method
phrase_bytes = bytes(phrase, encoding = 'utf-8')

# Store in EEPROM
# Note that internal EEPROM buffer is only 64 bytes.
mcp.I2C_write(MEM_ADDR,
    MEM_POS.to_bytes(2, byteorder = 'little') +  # position to write
    bytes(phrase, encoding = 'utf-8') +          # data
    b'\0')                                       # null

print("Saved to EEPROM.")





Result:

$ python EEPROM_write.py
Tell me a phrase: This is an example.
Saved to EEPROM.







Read from an EEPROM

Same as before but reading

We seek the first position writing 0x0000, then func:I2C_read 100 bytes and print until the first null.

On slower devices, the read may fail. Yo need to I2C_cancel() then and try again increasing func:I2C_read timeout parameter.

# Simple EEPROM storage.
import EasyMCP2221

# Connect to MCP2221
mcp = EasyMCP2221.Device()

# Configure GP3 to show I2C bus activity.
mcp.set_pin_function(gp3 = "LED_I2C")

MEM_ADDR = 0x50
MEM_POS  = 0

# Seek EEPROM to position
mcp.I2C_write(
    addr = MEM_ADDR,
    data = MEM_POS.to_bytes(2, byteorder = 'little'))

# Read max 100 bytes
data = mcp.I2C_read(
    addr = MEM_ADDR,
    size = 100)

data = data.split(b'\0')[0]
print("Phrase stored was: " + data.decode('utf-8'))






Output:

$ python EEPROM_read.py
Phrase stored was: This is an example.








I2C Slave helper

EasyMCP2221.I2C_Slave.I2C_Slave class allows you to interact with I2C devices in a more object-oriented way.

# How to use I2C Slave helper class.
# Data logger: Read 10 ADC values from a PCF8591 with 1 second interval
# and store them in an EEPROM. Then, print the stored values.
import EasyMCP2221
from time import sleep

# Connect to MCP2221
mcp = EasyMCP2221.Device()

# Create two I2C Slaves
pcf    = mcp.I2C_Slave(0x48) # 8 bit ADC
eeprom = mcp.I2C_Slave(0x50) # serial memory

# Setup analog reading (and ignore the first value)
pcf.read_register(0b00000001)

print("Storing...")
for position in range (0, 10):
    v = pcf.read()
    eeprom.write_register(position, v, reg_bytes=2)
    sleep(1)

# Dump the 10 values
v = eeprom.read_register(0x0000, 10, reg_bytes=2)
print("Data: ")
print(list(v))





Output:

$ python I2C_Slave_example.py
Storing...
Data:
[78, 78, 78, 78, 82, 102, 81, 31, 56, 77]









            

          

      

      

    

  

    
      
          
            
  
Full API reference


Device Initialization


	
class Device(VID=1240, PID=221, devnum=0)

	MCP2221(A) device


	Parameters

	
	VID (int, optional) – Vendor Id (default to 0x04D8)


	PID (int, optional) – Product Id (default to 0x00DD)


	devnum (int, optional) – Device index if multiple device found with the same PID and VID.






	Raises

	RuntimeError – if no device found with given VID and PID.





Example

>>> import EasyMCP2221
>>> mcp = EasyMCP2221.Device()
>>> print(mcp)
{
    "Chip settings": {
        "Power management options": "enabled",
        "USB PID": "0x00DD",
        "USB VID": "0x04D8",
        "USB requested number of mA": 100
    },
    "Factory Serial": "01234567",
    "GP settings": {},
    "USB Manufacturer": "Microchip Technology Inc.",
    "USB Product": "MCP2221 USB-I2C/UART Combo",
    "USB Serial": "0000000000"
}











Pin configuration


	
set_pin_function(self, gp0=None, gp1=None, gp2=None, gp3=None, out0=False, out1=False, out2=False, out3=False)

	Configure pin function and, optionally, output value.

You can set multiple pins at once.

Accepted functions depends on the pin.


	For GP0:



	GPIO_IN  (in) : Digital input


	GPIO_OUT (out): Digital output


	SSPND    (out): Signals when the host has entered Suspend mode


	LED_URX  (out): UART Rx LED activity output (factory default)









	For GP1:



	GPIO_IN  (in) : Digital input


	GPIO_OUT (out): Digital output


	ADC      (in) : ADC Channel 1


	CLK_OUT  (out): Clock Reference Output


	IOC      (in) : External Interrupt Edge Detector


	LED_UTX  (out): UART Tx LED activity output (factory default)









	For GP2:



	GPIO_IN  (in) : Digital input


	GPIO_OUT (out): Digital output


	ADC      (in) : ADC Channel 2


	DAC      (out): DAC Output 1


	USBCFG   (out): USB device-configured status (factory default)









	For GP3:



	GPIO_IN  (in) : Digital input


	GPIO_OUT (out): Digital output


	ADC      (in) : ADC Channel 3


	DAC      (out): DAC Output 2


	LED_I2C  (out): USB/I2C traffic indicator (factory default)












	Parameters

	
	gp0 (str, optional) – Function for pin GP0. If None, don’t alter function.


	gp1 (str, optional) – Function for pin GP1. If None, don’t alter function.


	gp2 (str, optional) – Function for pin GP2. If None, don’t alter function.


	gp3 (str, optional) – Function for pin GP3. If None, don’t alter function.


	out0 (bool, optional) – Logic output for GP0 if configured as GPIO_OUT (default: False).


	out1 (bool, optional) – Logic output for GP1 if configured as GPIO_OUT (default: False).


	out2 (bool, optional) – Logic output for GP2 if configured as GPIO_OUT (default: False).


	out3 (bool, optional) – Logic output for GP3 if configured as GPIO_OUT (default: False).






	Raises

	
	ValueError – If invalid function for that pin is specified.


	ValueError – If given out value for non GPIO_OUT pin.








Examples

Set all pins at once:

>>> mcp.set_pin_function(
...     gp0 = "GPIO_IN",
...     gp1 = "GPIO_OUT",
...     gp2 = "ADC",
...     gp3 = "LED_I2C")
>>>





Change pin function at runtime:

>>> mcp.set_pin_function(gp1 = "GPIO_IN")
>>>





It is not permitted to set the output of a non GPIO_OUT pin.

>>> mcp.set_pin_function(
...     gp1 = "GPIO_OUT", out1 = True,
...     gp2 = "ADC", out2 = True)
Traceback (most recent call last):
...
ValueError: Pin output value can only be set if pin function is GPIO_OUT.
>>>





Only some functions are allowed for each pin.

>>> mcp.set_pin_function(gp0 = "ADC")
Traceback (most recent call last):
...
ValueError: Invalid function for GP0. Could be: GPIO_IN, GPIO_OUT, SSPND, LED_URX
>>>











GPIO


	
GPIO_read(self)

	Read all GPIO pins logic state.

Returned values can be True, False or None if the pin is not set for GPIO operation.
For an output pin, the returned status is the actual value.


	Returns

	4 logic values for the pins status gp0, gp1, gp2 and gp3.



	Return type

	tuple of bool





Example

>>> mcp.GPIO_read()
(None, 0, 1, None)










	
GPIO_write(self, gp0=None, gp1=None, gp2=None, gp3=None)

	Set pin output values.

If a pin is omitted, it will preserve the value.

To change the output state of a pin, it must be assigned to GPIO_IN or GPIO_OUT
(see set_pin_function()).


	Parameters

	
	gp0 (bool, optional) – Set GP0 logic value.


	gp1 (bool, optional) – Set GP1 logic value.


	gp2 (bool, optional) – Set GP2 logic value.


	gp3 (bool, optional) – Set GP3 logic value.






	Raises

	RuntimeError – If given pin is not assigned to GPIO function.





Examples

Configure GP1 as output (defaults to False) and then set the value to logical True.

>>> mcp.set_pin_function(gp1 = "GPIO_OUT")
>>> mcp.GPIO_write(gp1 = True)





If will fail if the pin is not assigned to GPIO:

>>> mcp.set_pin_function(gp2 = 'DAC')
>>> mcp.GPIO_write(gp2 = False)
Traceback (most recent call last):
    ...
RuntimeError: Pin GP2 is not assigned to GPIO function.











ADC


	
ADC_config(self, ref)

	Configure ADC reference voltage.

Accepted values for ref are “0”, “1.024V”, “2.048V”, “4.096V” and “VDD”.


	Parameters

	ref (str) – ADC reference voltage.



	Raises

	ValueError – if ref value is not valid.





Examples

>>> mcp.ADC_config(ref = "VDD")





>>> mcp.ADC_config("1.024V")





>>> mcp.ADC_config(ref = "5V")
Traceback (most recent call last):
...
ValueError: Accepted values for ref are 'OFF', '1.024V', '2.048V', '4.096V' and 'VDD'.










	
ADC_read(self)

	Read all Analog to Digital Converter (ADC) channels.

Analog value is always available regardless of pin function (see set_pin_function()).
If pin is configured as output (GPIO_OUT or LED_I2C), the read value is always the output state.

ADC is 10 bits, so the minimum value is 0 and the maximum value is 1023.


	Returns

	Value of 3 channels (gp1, gp2, gp3).



	Return type

	tuple of int





Examples

All three pins configured as ADC inputs.

>>> mcp.ADC_config(ref = "VDD")
>>> mcp.set_pin_function(
...    gp1 = "ADC",
...    gp2 = "ADC",
...    gp3 = "ADC")
>>> mcp.ADC_read()
(185, 136, 198)





Reading the ADC value of a digital output gives the actual voltage in the pin.
For a logic output 1 is equal to Vdd unless something is pulling that pin low (i.e. a LED).

>>> mcp.set_pin_function(
...    gp1 = "GPIO_OUT", out1 = True,
...    gp2 = "GPIO_OUT", out2 = False)
>>> mcp.ADC_read()
(1023, 0, 198)











DAC


	
DAC_config(self, ref, out=0)

	Configure Digital to Analog Converter (DAC) reference.

Valid values from ref are “0”, “1.024V”, “2.048V”, “4.096V” and “VDD”.

MCP2221’s DAC is 5 bits. So valid values for out are from 0 to 31.

out parameter is optional and defaults to 0.
Use DAC_write() to set the DAC output value.


	Parameters

	
	ref (str) – Reference voltage for DAC.


	out (int, optional) – value to output. Default is 0.






	Raises

	ValueError – if ref or out values are not valid.





Examples

>>> mcp.set_pin_function(gp2 = "DAC")
>>> mcp.DAC_config(ref = "4.096V")





>>> mcp.DAC_config(ref = 0)
Traceback (most recent call last):
...
ValueError: Accepted values for ref are 'OFF', '1.024V', '2.048V', '4.096V' and 'VDD'.










	
DAC_write(self, out)

	Set the DAC output value.

Valid out values are 0 to 31.

To use a GP pin as DAC, you must assign the function “DAC” (see set_pin_function()).
MCP2221 only have 1 DAC. So if you assign to “DAC” GP2 and GP3 you will
see the same output value in both.


	Parameters

	out (int) – Value to output (max. 32) referenced to DAC ref voltage.





Examples

>>> mcp.set_pin_function(gp2 = "DAC")
>>> mcp.DAC_config(ref = "VDD")
>>> mcp.DAC_write(31)
>>>





>>> mcp.DAC_write(32)
Traceback (most recent call last):
...
ValueError: Accepted values for out are from 0 to 31.











I2C


	
I2C_Slave(self, addr)

	Create a new I2C_Slave object.

See EasyMCP2221.I2C_Slave.I2C_Slave for detailed information.


	Parameters

	addr (int) – Slave’s I2C bus address



	Returns

	I2C_Slave object.





Example

>>> pcf    = mcp.I2C_Slave(0x48)
>>> eeprom = mcp.I2C_Slave(0x50)
>>> eeprom
EasyMCP2221's I2C slave device at bus address 0x50.






Note

New from v1.5.1.








	
I2C_write(self, addr, data, kind='regular')

	Write data to an address on I2C bus.

Maximum data length is 65536 bytes. If data length is 0, this function
will not write anything to the bus.

Valid values for kind are:


	regular: start - data to write - stop (this is the default)


	restart: repeated start - data to write - stop


	nonstop: start - data to write





	Parameters

	
	addr (int) – I2C slave device base address.


	data (bytes) – bytes to write


	kind (str, optional) – kind of transfer (see description).






	Raises

	
	ValueError – if any parameter is not valid.


	RuntimeError – if the I2C slave didn’t acknowledge.








Examples

>>> mcp.I2C_write(0x50, b'This is data')
>>>





Writing data to a non-existent device:

>>> mcp.I2C_write(0x60, b'This is data'))
Traceback (most recent call last):
...
RuntimeError: I2C write error: device NAK.










	
I2C_read(self, addr, size=1, kind='regular', timeout_ms=10)

	Read data from I2C bus.

Maximum value for size is 65536 bytes.
If size is 0, only expect acknowledge from device, but do not read any bytes.
Note that reading 0 bytes might cause unexpected behavior in some devices.

Valid values for kind are:


	regular: start - read data - stop


	restart: repeated start - read data - stop





	Parameters

	
	addr (int) – I2C slave device base address.


	size (int, optional) – how many bytes to read, default 1 byte.


	kind (str, optional) – kind of transfer (see description).


	timeout_ms (int, optional) – time to wait for the data in milliseconds (default 10 ms).






	Returns

	data read



	Return type

	bytes



	Raises

	
	ValueError – if any parameter is not valid.


	RuntimeError – if the I2C slave didn’t acknowledge or the I2C engine was busy.








Examples

>>> mcp.I2C_read(0x50, 12)
b'This is data'





Solve timeout by increasing timeout_ms parameter:

>>> mcp.I2C_read(0x50, 64)
Traceback (most recent call last):
...
RuntimeError: Device did not ACK or did not send enough data. Try increasing timeout_ms.
>>> mcp.I2C_read(0x50, 64, timeout_ms = 25)
b'This is a very long long data stream that may trigger a timeout.'






Hint

You can use I2C_read() with size 0 to check if there is any device listening
with that address.

There is a device in 0x50 (EEPROM):

>>> mcp.I2C_read(0x50)
b''





No device in 0x60:

>>> mcp.I2C_read(0x60)
Traceback (most recent call last):
...
RuntimeError: Device did not ACK or did not send enough data. Try increasing timeout_ms.








Note

If a timeout occurs in the middle of character reading, the I2C but may stay busy.
See I2C_cancel().








	
I2C_cancel(self)

	Cancel an active I2C transfer.

This command can fail in two ways.


	SCL keeps low. This is caused by:


	Missing pull-up resistor or to high value.


	A slave device is using clock stretching while doing an operation (e.g. writing to EEPROM).


	Another device is using the bus.






	SDA keeps low. Caused by:


	Missing pull-up resistor or to high value.


	A i2c read transfer timed out while slave was sending data and now the I2C
bus is locked-up. Read the Hint.









	Returns

	True if device is now ready to go. False if the engine is not idle.



	Return type

	bool



	Raises

	
	RuntimeError – if I2C engine detects the SCL line does not go up (read description).


	RuntimeError – if I2C engine detects the SDA line does not go up (read description).








Examples

Last transfer was cancel, and engine is ready for the next operation:
>>> mcp.I2C_cancel()
True

>>> mcp.I2C_cancel()
Traceback (most recent call last):
...
RuntimeError: SCL is low. I2C bus is busy or missing pull-up resistor.






Hint

About the I2C bus locking-up.

Sometimes, due to a glitch or premature timeout, the master terminates the transfer.
But the slave was in the middle of sending a byte. So it is expecting a few more clocks
cycles to send the rest of the byte.

Since the master gave up, it will not clock the bus anymore, and so the slave won’t
release SDA line. The master, seeing SDA line busy, refuses to initiate any new
I2C transfer. If the slave does not implement any timeout (SMB slaves do have it,
but I2C ones don’t), the I2C bus is locked-up forever.

MCP2221’s I2C engine cannot solve this problem. You can either manually clock the
bus using any GPIO line, or cycle the power supply.




Note

Do not call this function without issuing a I2C_read() or
I2C_write() first. It could render I2C engine inoperative until
the next reset.

>>> mcp.reset()
>>> mcp.I2C_is_idle()
True
>>> mcp.I2C_cancel()
False





Now the bus is busy until the next reset.

>>> mcp.I2C_speed(100000)
Traceback (most recent call last):
...
RuntimeError: I2C speed is not valid or bus is busy.
>>> mcp.I2C_cancel()
False
>>> mcp.I2C_is_idle()
False
>>> mcp.I2C_cancel()
False





After a reset, it will work again.

>>> mcp.reset()
>>> mcp.I2C_is_idle()
True












	
I2C_is_idle(self)

	Check if the I2C engine is idle.


	Returns

	True if idle, False if engine is in the middle of a transfer (timeout detected).



	Return type

	bool





Example

>>> mcp.I2C_is_idle()
True
>>>










	
I2C_speed(self, speed=100000)

	Set I2C bus speed.

Acceptable values for speed are between 50kHz and 400kHz.


	Parameters

	speed (int) – Bus clock frequency in Hz. Default bus speed is 100kHz.



	Raises

	
	ValueError – if speed parameter is out of range.


	RuntimeError – if command failed (I2C engine is busy).”








Example

>>> mcp.I2C_speed(100000)
>>>











Clock output


	
clock_config(self, duty, freq)

	Configure clock output frequency and Duty Cycle.

Accepted values for duty are: 0, 25, 50 and 75.

Valid freq values are:
375kHz, 750kHz, 1.5MHz, 3MHz, 6MHz, 12MHz or 24MHz.

To output clock signal, you also need to assign GP1 function to CLK_OUT
(see set_pin_function()).


	Parameters

	
	duty (int) – Output duty cycle in percent.


	freq (str) – Output frequency.






	Raises

	ValueError – if any of the parameters is not valid.





Examples

>>> mcp.set_pin_function(gp1 = "CLK_OUT")
>>> mcp.clock_config(50, "375kHz")
>>>





>>> mcp.clock_config(100, "375kHz")
Traceback (most recent call last):
...
ValueError: Accepted values for duty are 0, 25, 50, 75.





>>> mcp.clock_config(25, "175kHz")
Traceback (most recent call last):
...
ValueError: Freq is one of 375kHz, 750kHz, 1.5MHz, 3MHz, 6MHz, 12MHz or 24MHz











USB wake-up


	
enable_power_management(self, enable=False)

	Enable or disable USB Power Management options for this device.

Set or clear Remote Wake-up Capability bit in flash configuration.

If enabled, Power Management Tab is available for this device in the Device Manager (Windows).
So you can mark “Allow this device to wake the computer” option.

A device reset() (or power supply cycle) is needed in order for changes to take effect.


	Parameters

	enable (bool) – Enable or disable Power Management.



	Raises

	
	RuntimeError – If write to flash command failed.


	AssertionError – In rare cases, when some bug might have inadvertently activated Flash protection or permanent chip lock.








Example

>>> mcp.enable_power_management(True)
>>> print(mcp)
...
    "Chip settings": {
        "Power management options": "enabled",
...
>>> mcp.reset()
>>>










	
wake_up_config(self, edge='none')

	Configure interruption edge.

Valid values for edge:


	none: disable interrupt detection


	raising: fire interruption in raising edge (i.e. when GP1 goes from Low to High).


	falling: fire interruption in falling edge (i.e. when GP1 goes from High to Low).


	both: fire interruption in both (i.e. when GP1 state changes).




In order to trigger, GP1 must be assigned to IOC function (see set_pin_function()).

To wake-up the computer, Power Management options must be enabled (see enable_power_management()).
And “Allow this device to wake the computer” option must be set in Device Manager.


	Parameters

	edge (str) – which edge triggers the interruption (see description).



	Raises

	ValueError – if edge detection given.





Example

>>> mcp.wake_up_config("both")
>>>











Device reset


	
reset(self)

	Reset MCP2221.

Reboot the device and load stored configuration from flash.

This operation do not reset any I2C slave devices.







Low level functions


	
SRAM_config(self, clk_output=None, dac_ref=None, dac_value=None, adc_ref=None, int_conf=None, gp0=None, gp1=None, gp2=None, gp3=None)

	Low level SRAM configuration.

Configure Runtime GPIO pins and parameters.
All arguments are optional.
Apply given settings, preserve the rest.


	Parameters

	
	clk_output (int, optional) – settings


	dac_ref (int, optional) – settings


	dac_value (int, optional) – settings


	adc_ref (int, optional) – settings


	int_conf (int, optional) – settings


	gp0 (int, optional) – settings


	gp1 (int, optional) – settings


	gp2 (int, optional) – settings


	gp3 (int, optional) – settings






	Raises

	RuntimeError – if command failed.





Examples

>>> from EasyMCP2221.Constants import *
>>> mcp.SRAM_config(gp1 = GPIO_FUNC_GPIO | GPIO_DIR_IN)





>>> mcp.SRAM_config(dac_ref = ADC_REF_VRM | ADC_VRM_2048)






Note

Calling this function unexpectedly resets (not preserve):


	All GPIO values set via GPIO_write() method.


	Reference voltage for ADC set by ADC_config() (not affected if ref = VDD)


	Reference voltage for DAC set by DAC_config() (not affected if ref = VDD)











	
send_cmd(self, buf, sleep=0)

	Write a raw USB command to device and get the response.

Write 64 bytes to the HID interface, starting by buf bytes.
Optionally wait sleep seconds.
Then read 64 bytes from HID and return them as a list.


	Parameters

	
	buf (list of bytes) – Full data to write, including command (64 bytes max).


	sleep (float, optional) – Delay (seconds) between writing the command and reading the response.






	Returns

	Full response data (64 bytes).



	Return type

	list of bytes





Example

>>> from EasyMCP2221.Constants import *
>>> r = mcp.send_cmd([CMD_GET_GPIO_VALUES])
[81, 0, 238, 239, 238, 239, 238, 239, 238, 239, 0, 0, 0, ... 0, 0]










	
Device.debug_packets = False

	Print all binary commands and responses.


	Type

	bool













            

          

      

      

    

  

    
      
          
            
  
I2C Slave helper class


	
class I2C_Slave(mcp, addr, force=False)

	EasyMCP2221’s I2C slave device.

I2C_Slave helper class allows you to interact with I2C devices in a more object-oriented way.

Usually you create new instances of this class using EasyMCP2221.Device.I2C_Slave() function. See examples section.


	Parameters

	
	mcp (EasyMCP2221.Device) – MCP2221 connected to this slave


	addr (int) – Slave’s I2C bus address


	force (bool, optional) – Create an I2C_Slave even if the target device does not answer. Default: False.






	Raises

	RuntimeError – If the device didn’t acknowledge.





Examples

You should create I2C_Slave objects from the inside of an EasyMCP2221.Device:

>>> import EasyMCP2221
>>> mcp = EasyMCP2221.Device()
>>> eeprom = mcp.I2C_Slave(0x50)
>>> eeprom
EasyMCP2221's I2C slave device at bus address 0x50.





Or in a stand-alone way:

>>> import EasyMCP2221
>>> from EasyMCP2221 import I2C_Slave
>>> mcp = EasyMCP2221.Device()
>>> eeprom = I2C_Slave.I2C_Slave(mcp, 0x50)






Note

MCP2221 firmware exposes a subset of predefined I2C operations, but does not allow I2C primitives (i.e. start, stop, read + ack, read + nak, clock bus, etc.).




	
is_present()

	Check if slave is present.

Perform a read operation (of 1 bytes length) to the slave address and expect acknowledge.


	Returns

	True if the slave answer, False if not.



	Return type

	bool










	
read(length=1)

	Read from I2C slave.

See EasyMCP2221.Device.I2C_read().


	Parameters

	length (int) – How many bytes to read. Default 1 byte.



	Returns

	list of bytes



	Raises

	RuntimeError – if the I2C slave didn’t acknowledge or the I2C engine was busy.










	
read_register(register, length=1, reg_bytes=1, reg_byteorder='big')

	Read from a specific register, position or command.

Sequence:


	Start


	Send device I2C address + R/W bit 0


	Send register byte, memory position or command


	Repeated start


	Send device I2C address + R/W bit 1


	Read length bytes


	Stop




See EasyMCP2221.Device.I2C_read() for more information.


	Parameters

	
	register (int) – Register to read, memory position or command.


	length (int, optional) – How many bytes is the answer to read (default read 1 byte).


	reg_bytes (int, optional) – How many bytes is the register, position or command to send (default 1 byte).


	reg_byteorder (str, optional) – Byte order of the register address. ‘little’ or ‘big’. Default ‘big’.






	Returns

	list of bytes





Examples

Read from a regular i2c device, register 0x0D:

>>> bme.read_register(0x0D)
>>> b'ÿ'





Read 10 bytes from I2C EEPROM (2 bytes memory position):

>>> eeprom.read_register(2000, 25, reg_bytes=2)
>>> b'en muchas partes hallaba '










	
write(data)

	Write to I2C slave.

See EasyMCP2221.Device.I2C_write() for more information.


	Parameters

	data (bytes) – Data to write. Bytes, int from 0 to 255, or list of ints from 0 to 255.



	Raises

	RuntimeError – if the I2C slave didn’t acknowledge or the I2C engine was busy.










	
write_register(register, data, reg_bytes=1, reg_byteorder='big')

	Write to a specific register, position or command.

Sequence:


	Start


	Send device I2C address + R/W bit 0


	Send register byte, memory position or command


	Repeated start


	Send device I2C address + R/W bit 0


	Write data


	Stop




See EasyMCP2221.Device.I2C_write() for more information.


	Parameters

	
	register (int) – Register to read, memory position or command.


	data (bytes) – Data to write. Bytes, int from 0 to 255, or list of ints from 0 to 255.


	reg_bytes (int, optional) – How many bytes is the register, position or command to send (default 1 byte).


	reg_byteorder (str, optional) – Byte order of the register address. ‘little’ or ‘big’. Default ‘big’.








Examples

Set PCF8591’s DAC output to 255. Command 0bx1xxxxxx.

>>> pcf.write_register(0b01000000, 255)





Write a stream of bytes to an EEPROM at position 0x1A00 (2 bytes memory position):

>>> eeprom.write_register(0x1A00, b'Testing 123...', reg_bytes=2)
>>> eeprom.read_register(0x1A00, 14, reg_bytes=2)
b'Testing 123...'
















            

          

      

      

    

  

    
      
          
            
  
Limitations and bugs


Limitations

USB polling rate for this device is 250Hz. That means:


	Maximum GPIO output frequency using GPIO_write(): 250Hz


	Maximum GPIO output frequency using set_pin_function(): 120Hz aprox.


	Maximum GPIO input frequency for GPIO_read(): 250Hz


	This also affects to ADC reading rate, DAC updating, and so on.




The ADC seems to be always connected. So leakage current for GP1, GP2 and GP3 is greater than for GP0. Think of it as a very weak pull-down resistor on these pins.



Bugs

None reported.

Bug tracking system: https://github.com/electronicayciencia/EasyMCP2221/issues





            

          

      

      

    

  

    
      
          
            
  
History


V1.5


V1.5.1

Add I2C Slave helper class.



V1.5.0

First EasyMCP2221 version.




Older releases

This project was initially a fork of PyMCP2221A library by Yuta KItagami (https://github.com/nonNoise/PyMCP2221A).

I did a few changes, then a few more, until I ended up rewriting almost all the code. Since the API is no longer compatible with PyMCP2221A, I decided to create a new package.

Tags v1.4 and earlier are from PyMCP2221A.





            

          

      

      

    

  

    
      
          
            
  
Links


	Source GitHub repository:

https://github.com/electronicayciencia/EasyMCP2221



	MCP2221 - USB 2.0 to I2C/UART Protocol Converter with GPIO - Microchip Inc.

https://www.microchip.com/en-us/product/MCP2221



	24LC128 - 128Kb I2C compatible 2-wire Serial EEPROM - Microchip Inc.

https://www.microchip.com/en-us/product/24LC128



	CircuitPython Libraries on any Computer with MCP2221.
(A similar project but using Adafruit’s MCP2221A breakout board instead of a bare chip)

https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221

https://github.com/adafruit/Adafruit_Blinka/blob/main/src/adafruit_blinka/microcontroller/mcp2221/mcp2221.py



	Another breakout board: Artekit AK-MCP2221

https://www.artekit.eu/doc/guides/ak-mcp2221/








            

          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | E
 | G
 | I
 | R
 | S
 | W
 


A


  	
      	ADC_config() (in module EasyMCP2221.Device)


  

  	
      	ADC_read() (in module EasyMCP2221.Device)


  





C


  	
      	clock_config() (in module EasyMCP2221.Device)


  





D


  	
      	DAC_config() (in module EasyMCP2221.Device)


      	DAC_write() (in module EasyMCP2221.Device)


  

  	
      	debug_packets (Device attribute)


      	Device (class in EasyMCP2221)


  





E


  	
      	enable_power_management() (in module EasyMCP2221.Device)


  





G


  	
      	GPIO_read() (in module EasyMCP2221.Device)


  

  	
      	GPIO_write() (in module EasyMCP2221.Device)


  





I


  	
      	I2C_cancel() (in module EasyMCP2221.Device)


      	I2C_is_idle() (in module EasyMCP2221.Device)


      	I2C_read() (in module EasyMCP2221.Device)


      	I2C_Slave (class in EasyMCP2221.I2C_Slave)


  

  	
      	I2C_Slave() (in module EasyMCP2221.Device)


      	I2C_speed() (in module EasyMCP2221.Device)


      	I2C_write() (in module EasyMCP2221.Device)


      	is_present() (I2C_Slave method)


  





R


  	
      	read() (I2C_Slave method)


  

  	
      	read_register() (I2C_Slave method)


      	reset() (in module EasyMCP2221.Device)


  





S


  	
      	send_cmd() (in module EasyMCP2221.Device)


  

  	
      	set_pin_function() (in module EasyMCP2221.Device)


      	SRAM_config() (in module EasyMCP2221.Device)


  





W


  	
      	wake_up_config() (in module EasyMCP2221.Device)


  

  	
      	write() (I2C_Slave method)


      	write_register() (I2C_Slave method)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Easy MCP2221
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





